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0.  Introduction 

As is well known, the theory of linear inequalities 

is closely related to the study of convex polytopes.  If 

the bounded subset P of g  has nonempty interior and 

is determined by i  linear inequalities in d variables, 

then P  is a d-dimensional convex polytope (here called 

a d-polytope) which may have as many as  i  faces of di- 

mension d-1,  and the vertices of this polytope are exactly 

the basic solutions of the system of inequalities.  Thus 

to obtain an upper estimate of the size of the computation 

problem which must be faced in solving a system of linear 

inequalities, it suffices to find an upper bound for the 

number f-CP)  o^ vertices of a d-polyfcope  P which has 

a given number fd_2.(P)  of  (d-l)-faces.  A weak bound 

of this sort was found by Saaty [14], and several authors 

have posed the problem of finding a sharp estimate.  Dantzig 

[33 mentions the closely related problem (arising naturally 

in connection with the simplex method for linear programming) 

of determining those convex sets which have the maximum 

number of extreme points, among all sets which are deter- 

mined by a system of m linear equations in n nonnegative 

variables. 



Our main concern here is with the.conjectured in- 

equality 

CD   fo < 
^d-i - d/ + lfd-i - d 

and its dual equivalent 

ci*) f-v af U- ^ 
where ^k^  denotes the greatest integer < k  and f 

denotes the number of s-faces of a d-polytope.  The valid- 

ity of these inequalities for all d-polytopos was conjectured 

by Jacobs and Schell [10] and by Gale [8,93, who observed 

that the proposed upper bound in (1*) is attained by the 

neighborly d-polytopes (studied by Bruckner [1], Caratheodory 

[2], Gale [7,8] and Hotzkin [15]) having the remarkable 

property that for all m < {d/2) , each m vertices deter- 

mine an  (m-l)-face.  Dually, equality in (1) is attained 

for d-polytopes such that for all m < {d/2),  each 

m(d-l)-faces intersect in a  (d-m)-face. 

The assertions (1) and (1*) are trivial for d < 2, 

where equality always holds.  For d = 5 they become 

fo < 2f2 - 4 and fg < 2f - 4-,  facts known to Euler [J], 

Saaty's bound [14] was sharp for d < 4.  The inequalities 
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(1) and (1*) were established by Fieldhouse [6]1 for 

all  d < 6,  and by Gale [9] for arbitrary d  when 

fd-l =d+2  or d+3.  Thus Gale shows that (1) 

holds whenever fd_1  is small enough.  We show here 

that it holds whenever fd_1 is large enough, specifi- 

cally when fd_1 > (d/2)
2 - 1.  This covers the case 

d < 6 and thus includes the result of Fieldhouse, but 

it does not include Gale's theorem when    d > 6 and does 

not fully settle the conjecture. 

Under the restriction fo > (d/2)
2 - 1, the inequality 

(1*) is established not only for d-polytopes, but also for 

an arbitrary Eulerian (d-1)-manifold of Euler character- 

istic  1 - (-1) ,  where an LXilerlan n-manifold (as 

introduced in [12]) is a finite simplicial n-complex Mn 

such that for each s-simplex <rs e Nn,  the linked complex 

L( <r   ,H )  has the same Euler characteristic 1 - (-i)n~s 

as an (n-s-l)-sphere. The principal tool is a formula 

from [12], applying to all Eulerian (d-l)-manifolds, 

which expresses f- , linearly in terms of 

f(d/2\- 1' f(d/2) - 2''''' ^1' ^o'  and tlle Suler charac- 

teristic ^ . With the aid of similar formalae for 

^d-2' ' *''^ ^d/2\'  we are a^^e fc0 show that whenever f 

is sufficiently large, then among all of the d-polytopes 

(or Eulerian (d-l)-manifolds with X ■ 1 - (~d)d) which 

have f  vertices,  the neighborly d-polytopes maximize 
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not only f^  but also all of the other functions 

■f^1 < s < d-2). The results for Eulerian manifolds 

appear in §1 below, and they apply directly to d-poly- 

topes which are  (d-l)-siinplicial.  A construction in 

$2 reduces the problem for general d-polytopes to those 

which are (d-l)-simplicial.  It is also proved there that 

if a d-polytope P is not a d-siraplex, then 

fs(p) ^ (stl) + ( s1) for 0 < s < d-l. where the lower 

bound is sharp. 43 discusses the inequalities (1) and 

(1*) for general d-polytopes, and §4 is devoted to Dantzig's 

problem.  §4 also contains a characterization of those 

convex polyhedra (not necessarily bounded) which are af- 

finely equivalent to the intersection of some flat with 

Y\ the positive orthant in g11. 
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1.  Eulerian manifolds 

Let K    denote the class of all finite simplicial 

complexes.  For K e K and m > 0,  let  s (K)  denote 

the ra-skeleton of K:  that is,  s (K)  is the set of m 

all simplices <rS  c K     for which  s < m.  (Note that 

sra(K) = K  iff dim K < m,  so  dim S (K) = m iff 

dim K > m.)  For each subclass  J of K we define 

J  .= |j e J:J has exactly v vertices^, 

and      i^m^ •=lJ E £:sm(J)  i
3 a complete m-complexj. 

Thus J e Jtm]  if and only if J e J,  J has at least 

ra + 1 vertices,  and each m + 1 vertices of J deter- 

mine an m-siraplex of J. 

Now suppose J <= K and ^J is a real-valued function 

on J. The function f will be called m-invariant pro- 

vided ^(J) = ^(J*)  whenever J  and  J'  are members of 

J such that f (J) = f (J')  for all  s < m. We shall ** s      s — 

say that  ^ is proper for  (J,m,v)  provided <f is 

m-invariant, J, Cm] /Ö,  and sup *(J ) = ^(J [mjV,  if 

^(J) < f(J,rCm])  for all J e J ~J fm],  then $   is 
■        ' «wV «"V   *«»v 

said to be strictly proper for  (J,m,v). 

1.1 PROPOSITION Suppose J <= K,  0 < jf < m,  and y 

and «^ are real-valued functions on J.  If •UT is proper 



lor  (J,£,v)  und  <(> is proper  resp. strictly proper 

for  (J>m.v).  then Y + f is proper rcsp. strictly 

proper  for  (J,in,v). 

Proof.  Let  J  e J [m] c J [jf]. Then 

sup(Y+ *)(JV) < supY(Jv) + sup <p(Jv) = 

= Y(Jo) +<f(Jo) = (Y + <f)(J0) < sup(Y+<p)(jv). 

Thus Y + ^ is proper for  (J,m,v).  If <f is strictly 

proper and J e Jv ~/ J^m],  then ^(J) < f(J )  and con- 

sequently (Y+<?)(J) < ( Y+,f)(J0).l I 

Now let  A denote the set of all eventually zero 

sequences a = (0^,0^, . . .)  of real numbers.  For a e A 

and K e K  let 

a(K) .= 2:c_n a f (K), '8=0 3 S 

where  fs(K)  is the number of s-simplices of K.  It is 

clear that if as = 0  for al]  s > m,  then the function 

a is in-invariant on K. 

V/e shall denote by a, v the falling factorial 

n(n-l).. .(n-r+1) and by n^T^ the rising factorial 

n(n+l)...(n+r-1),  with the convention that n,nv = 1 = n^0^ 

1.2 THEOREM Suppose a E A with a = 0 whenever 

s > m and whenever s < m - k. Then the function a is 

proper for  (K,m,v)  if 



(a^Z!  a
m_q(

m+l)r^(v-s)(lj"3) > 0  (0 < ü < k), 
s=0 

and is strictly proper when the conditions  (a.) 

(0 < j < k)  are valid wi bh strict inequality. 

Proof.  Suppose  K c K  and  K^ E K ,Cm].  Each 

s-simplex CT3  of K  is determined in a + 1  differ- 

ent ways by specification of one of the  (s-l)-faces 

(having  s vertices)  of <rS  together with the remaining 

vertex of <rS  (which is one of v-s vertices of K). 

Thus 

(V (s+l)fs(K) < (v-s)fs_1(K) 

Writing  f  for  f (K),  we obtain the following in- 
s       s 

equalities, whose justification is indicated in parentheses 

to the right: 

(V (m+l)fm < (v-m)^ 

(1)  C^lKV-lVl + Vm^ < f,n-lCam-l(m+1) + am(v-n)]   (a^bj 

(b  ,) v m-1 ^m-l ^ Cv-m+l)fm_2 

(2)  (m + l)m(affi_2frii_2 + a^f^ + ajj < Cl»alfbm-1) 

< f oCa 0(xn+l)nj + a , (m+l)(v-in+l) + a (v-m)(v-m+l)] 

i 



6c)     (^l)(k)(*m_kfm_k + ocm_k+1fm_k+1  .....a^^^ + amfm)  < 

£f-k[:E:loa"-s(m+1)^)(v-r3)(k"')3- ^-^''Vi'Vic.i) 

But of course  f^ < ^m-k + lj ,  and in conjunction with 

the inequalities  (k)  and  (ak)  this implies that 

(k*)  oc(K) < [(m+l),.r
2(rn-kfj) 21   am  fin+1). ,(v-m)(k-s) = 

s=0        \S) 

= E   ^n-sU-^O = *(K0), 
o = U 

whence a is proper for  (K,m,v). 

Suppose, finally, that all of the inequalities 

(aj)  (0 < j < k)  are strict and that  a(K) = a(K ). 

Since the inequality in  (k*)  is strict unless 

fra-k = (ai-k+lj,  we conclude that K e K [m-k].  An 

inequality  ((k-1)')  (which is related to the inequality 

(k-1)  as  (k*)  is to  (k))  then shows that  K e K Cm-k+1], 

and continuing the process we conclude after a number of 

steps fc it K e K [m].I I 
/W 

1.3 COROLLARY Suppose a = (a -...,a ,0,...) e A 

(that is,  ocs = 0 for all  s > ra).  If am > 0 then the 

function a is strictly proper for  (K,m,v)  whenever v 

is sufficiently large. 

Proof.  Note that condition  (a.)  in 1.2 is equivalent 

to an inequality of the form 



a vd + p .(v) > 0, 
m     3 — 

where ■ p.  is a polynomial of degree  j-1  whose co- 
u 

efficients are determined by the values of  a .a, ,...,a 
ox. m 

1.4 COROLLARY Suppose a = (0,...,0,a _1,a ,0,...) e A. 

If the numbers a  and  a  ,(m+l) + a (v-m)  are both —      m     m-1        m          

> 0 \resj3. > 0/ ,  then the function a is proper 

\re3£. strictly proper\ for  (K,m,v). 

Proof.  This is merely the case  k = L of 1.2.11 

For each positive integer n,  let En denote the 

class of all Eulerian n-manifolds (as defined in the Intro- 

duction and in [12]).  When n is odd and  M e£n,  the 

iSuler characteristic  ^(.(M)  is necessarily equal to 0 

(3.2 of [12j).  '.■/hen n is even and  c  is an integer, 
II c 

Jl '   will denote the class of all eulerian n-manifolds 

M for which ^(M) = c.  ',/e recall from 5.2 of [12] the 

fact that' if  H cEn with n = 2u-l  or n = 2u-2,  then 

(for n = 2u-l)  fn(H) = T.^   (-l)^1^ -J^L-^"1) f .(H) , 

and 

(for n = 2u-2)  fn(M) = (-l)^1^)  ^(M) ^^(-l)""^ f^1) f (M) . 

A d-polytope  P will be called m-neighborly provided 

each ra vertices of P determine an (m-l)-face of  P. 

Gale [7,8] has proved that for d/2 < m < d + 1,  the only 
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ra-neißhborly d-polytopes are the d-simplices, while for 

to < (i/2 there exist m-neighborly d-polytopes having any 

specified number of vertices  > d + 1.  Such polytopes 

must be (d-l)-simplicial when m = d/2  (Gale [?]),  but 

for m < d/2 there exist m-neighborly d-pol.ytopes which 

are (d-l)-simplicial and also those which are not (d-1)- 

simplicial (both having any number of vertices  > d + 1). 

As the term will be used here, a neighborly d-polytope is 

one which is (d-l)-simplicial and {d/2) -neighborly.  If 

K is the complex formed by all of the proper faces of 

such a polytope, then of course  K E KG((d-2)/^];  that 

is, K is a sinplicial complex whose  ^(d-2)/2) -skeleton 

is a complete complex.  By 3.3 of [12],  K is an Eulerian 

(d-1)-manifold, so we conclude that 

2u-l 
for v > 2u + 1,  the class E^     [u-1]  is nonempty 

v 

2u-2,2 
for v > 2u,  the class ^      [u-2]  is nonempty, 

v 

1,5 THEOREM ouppose  n = 2u - 1  and v > n + 2. 

Then the functions f ,f ■,,...,£    ■,     and f  are (u-1)-        n' n-l'   ' u+1    u   

invariant on E ,  and for v sufficiently large they are 

strictly proper for  (E ,u-l,v).  In particular, if 

v > u -1 then 

sup f ( E n)  = f C E n Cu-13) = -2-  (V'U) , nv  v'    n^ _. v     '   v-u  V. „ / ' 
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while  for    v > u    -  1     the  maximum  of    f       on    E is 

tttained  only on    E n[u-l]. 

fn'•••'fu 

Proof.  For the  (u-l)-invariance of the functions 
n 

on E ",  it suffices to note that on E ri each 

.,fo  (by 2.4 of [12]).  In fact, for 0 < i < u-1 

of these functions is a linear combination of the functions 

f 
i-j. ■   - o  ' " 

is seen to have the form 

u-2 

u-l' 
the function f 

fn-i = (J fu-i + ZI."  "(n.U)^    (on£n). 

Since by 1.5 the function 

(a(n,i,0),a(n,i,l),...,a(n,i,u-2),( ) ,0,...)  (eA) 
i' 

is strictly proper for  (K,u-l,v)  whenever v is suffi- 
~ n 

ciently large, and since the class E  [u-l]  is nonempty, 
^ v 

it follows that  f  .  is strictly proper for  (E ,u-l,v) 

whenever v is sufficiently large. 

Since ——- ^  j is exactly the number of n-faces 

of a neighborly  (n+l)-polytope which has  v vertices 

(Gale [8]),  we may complete the proof of 1.5 by showing 

that the function f  is proper for (E^^u-ljv) when 
2 2 v > u - 1  and strictly proper when v > u - 1.  To 

this end we employ the formula for f  stated above, re- 

presenting f  as a linear combination of  f    and 

f  0,  plus a linear combination of  f  -,  and f  ,. , u-c!' u-5       u-^' 
plus •••.  For example, 
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f13 = (f6"6fs) + (20f4-48f5) + (90f2-152f1) + 152fo 

when n = 13.  In view of 1.1 and 1,4 we may reach the de- 

sired conclusion by verifying that if a. .= a(n,0,o),  then 
J 

""aj-l^ + 1') + a^v " ^ -0  ror J = «i-l»u-5»..., 

with strict inequality when we want strict propriety.  This 

is equivalent to the requirement 

[JJ la   Ax I < (v-jVCj + l) 

The requirement  [j]  is satisfied when j = u-1,  for the 

left side of the inequality [u-1]  is equal to u-1 and 

the inejuality is equivalent to the condition (v > u - 1) 

which forms part of our hypotheses.  Now as  0  decreases 

through the values u-1, u-2,.,.,  the right side of  [j] 

actually increases, 30 to complete the proof of 1.5 it 

suffices to show that during this same decrease in  j,  the 

left side of the inequality  [j]  decreases in value.  This 

amounts to the requirement that 

la. ,/a.I < la./a. ,1 
i-l 1 -  1 i+1 (1 < i < u-2) 

or equivalently that 

This is equivalent to the assertion that 

i(i+2)(i-2u+l)(i-u+l) < (i+l)2( i-u) (i-2u-2)-, 
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which on substituting x-1 for i  reduces to 

2 2 ux - Jux + 2u  > 0, 

The discriminant of the quadratic form is u (9-8u), 

which is negative when u > 2.  This establishes the pro- 

priety of fn  except when u = 1,  and that case is trivial; 

further, the strict propriety of f  is assured when n 
v>u2 - l.ll 

1.6 THEOREM.  Suppose n=2u-2,  v>n+2,  and 

the integer c  is given.  Then the functions  f , 

fn-l,"*,fu  arLd fu-l  are  (u-2)-invariant on £ n'c, 

and for v sufficiently large they are strictly proper 

for  ( ^E n' , u-2, v).  In particular, if v > u2 - 2 

then 

.v-u 
sup /  n'2v    / n'2r   N    /v-u\ fn(£ v ) - 'nil   T I-«) ■ ^ (uJ , 

v/hile for v > u' 2 the maximum of f  on  E  n — ^ 
n,2 

n,2 
is 

attained only on ^E    Cu-2]. 
'^' v 

Proof.  (This is a paraphrase of the proof of 1.5.) 

By 2.4 of [12], each of the functions f ,...,f ,  on E n n7   ' u-i    <••» 

is a linear combination of the functions  f 0,...,f  and u-2'   ' o 

\    (where ?(_ is the .'luler characteristic).  Since the value 

of X  is fixed (=c)  on En,c, the functions f ,...,f , 
* iv        ■> n'   ' u-1 

must be  (u-2)-invariant on ^g n'c.  Now for 0 < i < u-1, 

the linear expression of  f  .  in terms of f p,...,f 
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and  ^ involves fu_2 with a positive coefficient, and 

since the class E n»  [u-2] is nonempty it follows that 
v p 

fn-i  is strict;1y Proper for (E,n' ,u-2,v)  whenever v 

is sufficiently large. 

For n = 2u-2 and v > n + 2,  the type of con- 

struction and reasoning which were employed by Gale [8] 

for odd  n lead to neighborly (n+l)-polytopes having v 

vertices and 2(^~^) n-faces.  The proof of 1.6 is com- 

pleted by showing that if a. = (-l)U""'Wtl"^71) (the 

coefficient of f.  in the expression for  f ),  then 

for v > u2 - 2 and j = u-2, u-5,...,la  /a I < (v-J)/(ö+l) 

Verification of this is quite analogous to that in 1.5.11 
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2.  Polytopes and pyramids 

Recall that a convex polytope P in R  is the 

convex hull of a finite set or (equivalently) is a bounded 

set which is the intersection of a finite number of 

closed halfspaces.  A face of  P is either P itself, 

the intersection of  P with a supporting hyperplane, or 

the empty set 0.  A proper face is one other than P 

or £). 

The following is well-known and easily proved. 

2.1 PROPOSITION Suppose X  is the set of all ver- 

tices of a convex polytope  P = con X,  and Y is a proper 

subr'ct o£ X.  Then the JjojJjOv/ing three statements are e- 

quivalent: 

(*)  Y As the set of all vertices of some face of P^ 

(ii)  aff  Y n con (X ~ Y) = 0; 

(iii)  X admits a supporting hyperplane H for 

which X n H = Y. 

(Here con indicates the convex hull and aff indicates the 

affine hull (smallest containing flat)). 

A d-polytope  P will be called pyramidal at  q  pro- 

vided  P is the Join of q  and a  (d-1)-polytope;  an 

equivalent requirement is that the vortex q of P should 

not be an affine combination of the remaining vertices of 

P. 



2.2 PROPOSITION Suppose q is a vertex of a face 

P of a polytope P. If P is pyramidal at q then so 

is  F. 

2.3 PROPOSITION A d-simplex is pyramidal at each 

of its  d + 1  vertices.  If a d-polytope is pyramidal at 

d - 1  or more of its vertices, then it is a d-simplex. 

For each d > 2  there exists a d-polytope F-  which is 

pyramidal at exactly d - 2  of its vertices. 

Proofs.  V/e prove only the second and third asser- 

tions of 2.3, leaving the rest to the reader.  Clearly 

the first assertion is true if d < 2.  Suppose it is 

known for d = k - 1 > 2  and consider a k-polytope  P 

which is pyramidal at  k - 1  or more of its vertices. 

Let q  be such a vertex and let  Q be the  (k-l)-polytope 

such that  P is the join of  q and ^. It follows from 

1.2 that rl    is pyramidal at k - 2 or more of its ver- 

tices and then from the inductive  hypothesis that Q is 

a  (k-l)-simplex.  Thus the set  P(= con (Q U ^qj ))  is 

a k-simplex and the second assertion of 2.5 follows by 

mathematical induction. 

To construct the polytopes P, we start by taking 

for Pp an arbitrary convex quadrilateral(which clearly 

has the desired property), and having defined P. .  we 

let P,  be the Join of Pv i  anci an additional independent 

k-1   k vertex q.  (For example, we may assume that  P, , <= R   ^ 5 ; 
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then choose  q K Hk ^ g1'-1  and let Pk .= con (Pk_1 U(q}).) 

For later use, note that the s-faces oi" Pk  are just the 

s-faces of  Pj.  and in addition the joins of q  with 

the various  (s-l)-faces of  P.  ; hence 

fs^k) = VW + fs-l(Pk-l)- ,l 

When X is the set of all vertices of a d-polytope 

con X and  q  is one of these vertices, we will say that 

X'  is obtained from X hy pu.shinp; q  to  q*  provided 

X' = (X—tq|) uiq']      where q*  is a point of con X such 

that the segment  Iq.q'] does not intersect any (d-l)-flat 

determined by points of X.  Clearly such a pushing is al- 

ways possible.  The following result amplifies a remark of 

Gale ( §2 of [9J). 

2.4 THE0REI1  Suppose  X is the set of all vertices 

of a d-polytope con X,  and  X'  is obtained from X b^ 

pushing q  to q'.  Then q'  is a vertex of the d-polytope 

con  X1,  and each proper face of con X'  which includes 

q'  is pyramidal at  q'.  For all  s < d-1, 

fs(con X') > fs(con X) + gs(q,X) + Bg+1(q,X), 

where g (q,X:)  denotes the number of proper r-faces of 

con X which include  q but are not pyramidal at  q. 

If every proper face of con X which includes  q  is pyra- 

midal at  q,  then fs(con X') = f^Ccon X)  for ail  s. 

■     ■     ■ : 
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at  q,  while if  s < d-2  an additional 3-face of con  X' 

arises from each  (s+D-face of con X    which includes  q 

but is not pyramidal at  q.  .Since there is no duplication 

among these contributions, the inequality stated in 2.4 is 

implied by the conjunction of (a), (b), and (c). 

If Y    is as in (a) and  H is a supporting hyper- 

plane of con X such that  X fl H = Y,  then X' fl H = Y 

und consequently con Y is an r-face of con X'.  This 

proves (a). 

Now with X cr g ,  suppose Y is as in (b) and let 

Z .= Y ~tqj . ■■!e  want to show that 

aff(Z U Iq-j ) fl A = 0,  where A   .= con(X~r). 

Suppose the contrary. Then we have 

V3' + ^ZieZ
azZ =^xcX~Y!3xx e con X'   with 

ao + ^zezaz = 1' ^"xeX-Y^x = 1» always Px > 0. 

.Since q-  is ititerior to con X while con Z is an 

(r-l)-face of  0on X,  it follows that a > 0.  Now 

we assume without loss of generality that 0 e äff Z 

and let 5 denote a linear transformation of 3d onto 

B 
.d-r+l 

such that the kernel  I"1«)) of J is equal to 

äff Z.  Then oi course 

;  

S(aff Y) = H(|q)  and ^(aff(Z U [q1]) = R(Sq'). 

:'-•••■».«.:■.»■:■:.;,».■..-,,,,-■,,.,:,::,,.»„.,,,: 
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•Unco Y is the set of alJ vertices of a face of con X 

we have 

(aff Y) n A = 2i  and  R(Jq) H |A = 25, 

where the second statement follov/s from the first be- 

cause  aff Y = S  (R(Jp)).  Thus the polytope |A in 

H '    Is act intersected by the line IK^Q) t'ut (re- 

calling that a > 0)  it is Intersected by the ray 

J0,oo[(^q'). Consequently the segment  ]q,n']  includes 

a point  w  auch that the ray  ]0,oo[(Jjw)  intersects a 

(d-r-l)-faco of JA.  There must be d-r vertices 

vo, .. ., VJ_T,_1  of this face whose affine hull is a 

(d-r-J)-flat in Hd"r+1,  und then with u. E |-1(v. ) fl X 

it can bo verified that the subset  Z U ^u.^ d~r~1  0f x 

determines a  (d-l)-flat in ijf  which includes the point 

w  of  JPtP'].  This contradicts the definition of pushing 

and completes the proof of (b). 

;!ow(prepari ng for (c))  with X c: g ,  let us denote 

by C  the union of all rays which emanate from  q'  and 

pass through the various points of  con(X~lqi);  C  is 

a polyhedral convex cone with vertex q'  and  C  is point- 

ed (contains no line). We claim that con X' = C n con X, 

•.vhere inclusion in one direction is obvious.  To estab- 

lish the reverse inclusion we must show that if  p e con X * 

con X1,  then p t C.  '/hen p t con X'  we know that  p 

is separated from con X'  by a (d-l)-flat  H determined by 
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points of X',  and since p r.  con X  this flat must pass 

between p and p«.  In view of the definition'of push- 

ing, bhis implies bhat q' e M, „hence ;i in a supporting 

hyperplane of C and p 4 G. We conclude that 

con X' = C n con X.  Prom this it follows that every face 

F of con X'  which includes  q'  is contained in a face 

of C,  and hence all of the other vertices of F must 

lie in the set  (X^tqJ) n bdry C. 

Now suppose, finally, that  Y  is as in (c); that is, 

Y is the set of all vertices of an r-face con Y of 

con  X  (with r < d-1),  and  q e Y but  con Y is not 

pyramidal at  q.  Then with  Z .= Y ~ In}, it is clear that 

aff Z = aff Y and (by 2.1) con Z is an r-face of con X'. 

This is the first assertion of (c).  With the cone C as 

above and  R .= bdry 0,  the set  B is the union of a 

finite number of  (d-l)-dimensional polyhedral cones, each 

having q'  as its vortex.  .3ince con Z <= c  and 

p e Y n ((aff Z^-G),  the polytope con Y cuts across  B 

and the intersection B fl con Y (= R n con Z)  is the union 

of a finite number (> 1)  of (r-l)-faccs of con Z.  It can 

be verified that each of these faces  F is an (r-l)-face 

of  con X'  and that  con (F U iq'j )  is an r-face of con X1. 

This establishes (c) and hence completes the proof of 2.4 

except for the statement about equality of f (con X)  and 

fs(con X').  That statement follows from (a), (b), and (c) 

in conjunction with the fact that each proper face of  con X« 

that includes q'  is pyramidal at q'. I I 



i       2 2 

A polytope will be called s-simplicial provided all 

of its s-faces are simplices, 

2.5  COROLLARY  For  V > d + 1  and  2 < s < d - ], 

let  M(d,v,s)  denote the cla.-.s of all d-pqlytopea wbio.h 

have v vertices and which, among all d-polytopes with 

v verticen, have the innximum number of s-facer,.  Then 

M,(d,v,s)  includes d-polybones which are (d-1 )-r;impl icial. 

All_of the memberG of M(d,v-,s)  are s-nimplicial and 

(for s < d - 2)(s f l)-simnlicial.  If d = a + l, d-s-» 

or d = 2(s + 1),  then all of the members of M(d,v,s) 

are (d-l)-sifnplicial. 

Proof.  Suppose  qe I1(d,v,s)  and let  q,,....n 

be the vertices of  Q.  Let  Xo = ^q.:! < i < u],  and 

for i < i < v  let the set  Xj^  be obtained from X._, 

by pushing qi  to a new position q!.  Let 

P .= con^:! < i < v|.  From 2.4 it follows that every 

proper face of  P is pyramidal at each of its vertices, 

and then from 2.3 that  P is  (d-l)-3implicial.  The 

inequality in 2.4 implies that  f (P) > f (O)  (whence 

P E M(d,v,s)),  with strict inequality if some s-face 

(or, when s < d - 2,  some (s + l)-face)  of Q fails 

to be a simplex and hence Is nonpyramidal at some vertex.' 

But of course strict inequality is impossible, so all of 

the desired conclusions follow except for the special 

case  d = 2(s + 1).  That case is covered by Gale's obser- 

vation [8] that " the faces of a neighborly polytope are 

Simplexes". I I 

o 
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There is an open problom connected with 2.5.  For 

each  d > 5 let  M(d)  denote the set of all integers 

s e [l,d-l]  such that for each v > d + 1,  all of 

the members of  n(d,v,s)  are  (d-l)-simplicial.  From 

2.5 it follows that  (d-1, 6-2]  <= ri(d),  and also 

(d-2)/2 e M(d)  when d is even.  By considering pyra- 

mids based on neighborly polytopes, it can be verified 

that  s S.  M(d)  when s < (d-5)/2.  The problem is to 

determine  11(d)  for all  d.  Note that M(3) = Cl,2] , 

M(4) = U.2,5l, 

bM   «= n(5) c (2,5,^ and [2,4,5] c M(6) = [2,5,4,5), 

but we do not know whether 2 e M(5) or    3  E  11(6). 

It may be generally known that each d-polytope has 

at least as many s-faces as has a d-simplex  (cf. Saaty 

[14, p. 527J)  but wo have not found a proof in the liter- 

ature.  Accordingly, it seems worthwhile to establish 

the following stronger result. 

2.6 THEOREM For all  d  and  s,  each d-simplex 

has exactly (s*j) s-faces. Vor  all  s  and for each 

d-polytope  P which is not a d-simplex, 

v« >- &l) * V:1) ■' 
further, there is a d-polytope  P,  having 
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Proof.  The first assertion is obvious, for a d-simp]ox 

has  (d + 1) vertices and each  s + 1  of these determine 

an s-face.  Now for all  d and  s,  let • 

sw.s) ■• O * C:1). and note that 

S(d,s) = J(d - 1, s) f |(d - 1, s - 1). 

The polytopes  P,  are constructed as in 2,5;  that they 

have the stated property follows from the above recursion 

for 5(d,s)  in conjunction with the equation terminating 

the proof of 2.5. 

'Je  want to show that if  fl > 2  and  P is a d-poly- 

tope which is not a d-siraplex, then f (P) > ^(d,s)  for 

all  s.  Phis is evident in the two-dimensional case, 

where 5(2,0) = ?(2,1) = 4.  Suppose it is known up through 

the (d-1)-dimensional case, and consider a d-polytope 

P as described.  .3ince  P is not a simplex,  2.5 implies 

that  P is nonpyramidal at some vertex p.  Pet  P be 

a  (d-l)-face of P which misses p and let q be a 

vertex of  P which is not in  F U (p^ .  Such a q 

exists by nonpyramidality. Let G be a (d-l)-face of 

P which includes  q  but not p.  Let H be the inter- 

section with  P of a  (d-l)-hyperplane which strictly 

separates  p from the remaining vertices of  P,  and let 

K be the intersection with  G of a  (d-l)-hyperplane 

which (relative to the  (d-l)-flat äff G)  strictly 
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separates q from the remaining vertices of G. The 

(d-l)-pol.ytopes  F  and  G  and the  (d-2)-polytope  K 

may all be simplices, bu(, in any case the inductive 

hypothesis implies that 

Since the numbers  ^(F), f ,(H),  and  f  , (K)  are 

respectively the numbers of  s-faces  of P which lie 

in F,  which include p,  and which lie in G while in- 

cluding  q,  it follows that  f (I') > |(d,s).ll 
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3.  The number of vortices of a convex polytope 

Here the results of 9§l-2 are applied to establish 

the conjectured inequality (1) from the Introduction, 

under the restriction that  f. , > (d/2)  - 1. 
a-J. — 

For 1 < s < d - 1  and  v > d + 1,  let  N(d,v,s) 

denote the number of s-faces of a neighborly d-polytope 

v/hich bar? v vortices.  (It follows from formulae in 

[12] that all such polytopes have the same number of 

s-faces.  Accordinp; to Gale [8], this has also b'-'-n es- 

tablished by Pieldhouse (perhaps in [61).) 

5.1  THfcDREM  For each integer d > 2  there is 

an integer k(d)  which has the following property: 

whenever v > k(d)  and  P is  a d-polytope having 

v vertices,  then  f (P) < I{(d,v,:;)  for  1 < s < d - 1; 

if  s=d-l,  s=d-2,  or  P is  (d-l)-simplicial 

and  s > <(d-2)/2),  t.hen f (P) < !i(d,v,s)  unless  P 

is neighborly. 

Proof.  Let  k(d)  be chosen according to 1.5 and 

1.6,  so that when d = 2u and  v > k(d)  the functions 

f,_-,,...,f  are strictly proper for  (E _ ,u-l,v), 

while v/hen d = 2u - 1  and  v > k(d)  the functions 

f, T,...,f T  are strictly proper for  (E _ ' ,u-2,v). d-1'   ' u-1 •  '       v ^    ii/ 

Consider a d-polytope  P which has  v vertices, with 

v>k(d).  If  P is  (d-l)-niinplicial, let  Q .= P. 

If P is not  (d-l)-simplicial, let 'I    be a  (d-l)-sim- 

plicial d-polytope such that  fÄ(P) = f^(,0, fa(P) < f0(
r4) O        OS        s 
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for  1 < s < d - 1,  fd_2(P) < fd_2 (Q)  and 

^d-l^) < f(i_i(Q)«  (The existence of such a Q is 

Guaranteed by 2.5.)  By 5.5 of [12],  the complex 

formed by the proper faces of Q  is an Eulerian 

(d-l)-manifold.  Thus from the choice of k(d)  it 

follows that fs(Q) < K(d,v,s) and that the inequality 

is strict for  s > <(d-2)/2)  unless  Q is neighborly. 

This completes the proof. !I 

5.2 TIIHDREM  Suppose  P is a d-polytope havinp; 

v vertices and  f (d-p-facos.  If d = 2u,  then 

f < Ä (V) ^2  v > u^ - 1  and  v < ^ (f-uj 

when f > u2 - 1.  If d = 2u - 1  then f < 2 (V"V) 

when v>u2-2 and  v<2 (J"J)  when f > u2 - 2. 

Proof.  For the inequalities  " f < ... ",  use 

2.5 in conjunction with 1.5 and 1.6, as was done in 

the proof of 5.1.  The inequalities  " v < ... " then 

follow with the aid of the standard polarity theory for 

convex poiytopes  (Weyl Ll5J.ll 

5.5 COROLLARY At least for d < 6,  the inequali- 

^i63 (1) and (1*) of the In' rod iction are satisfied b^ 

all d-polytopes. 

It seems probable that the extra conditions on 

v,f and d  are required in 5.1-5.5 merely because our 

approach is inadequate.  We are interested mainly in those 

cell-complexes which arise as the system of all proper 
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d-1 

faces of a d-polytope, but have not made full use of 

all the structure at our disposal.  It was used only 

to restrict attention to Pierian (d-1)-manifolds of 

Euler characteristic  1 - (-l)d,  and then a formula 

valid for all such manifolds was used to express  f 

as a linear combination or £ /,/r\ f/ , \        r 
<d/2>-l' 1<d/2>-2'*-*' 11 

and  fo.  From that point on, the reasoning applied to 

an arbitrary simplicial  (d-l)-cornp.l ex,  without using 

even the information contained in 2.6.  Presumably, a 

fuller use of the available structure would lead to a 

proof of the Inequalities (1) and (I*) without additional 

restrictions.  Thus we conjocturo that  f (P) < N(d,v s) 

wnenever 1 < s < d-i  and  P is a d-polytope havin"- 

v vertices,_while (dually) f^v)   < N(dtf,s)  whenever 

0 < s < d-2  and  P is a d-polytope having f(d-1j-faces. 

For  2 < d < f - 1, let     y(f,d)  denote the maxi- 

mum number of vortices achieved by any d-polytope which 

has f (d-1)-faces.  Part of the above conjecture is the 

same us the JSG-conjecture (Jacobs and Schell [10], Gale 

[8,9J)  namely, that  V(f,d) = J-  (f-u) when  d = 2u 

and  V(f,d) = 2 CJ:J)  when d = 2u - 1;  this is proved 

in 5.2 for u - 1 < f.  Now it is also of interest to 

determine the maximum of  V(f,d)  for other ranges of 

values of d  (when  f  is given).  Partial results in 

this direction can bo obtained from 5.2, and the same 

line of reasoning leads to the following observation. 
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5.4 PROPOSITION Suppose the JSG conjecture is 

correct, and  f is an integer  > 2,     Then for the 

polytooes which have  f  maximal proper faces, the maxi- 

SHa possible number of vertices is the larger of the two 

numbers 

Ä i^) *m ( 
3f ^ 6 -• iffef2 - 4) 

10 ) 

md 

a ([:y HUh c = ( ̂ f i- id -Vfof2^) 
10 ) • 

Proof.  From the JSG conjecture it follows that if 

2(u + 1) < f - 1,  then 

y(iVJu)     (f-u-lKufl) 
V(f,2(u.r)) = (f-äl)(f-.2u-l) ' whence 

(1)  V(f,2u) < >/(f,2(u^l))  iff u < (5f-^->rC5f2-^)/10 . 

The JSG conjecture implies also that if 2u + 1 < f - 1, 

then 

V(f,2u-l) 
vTf ,2u + l)' 

(f-u)u   
(i-iu+i)Cf-2u) ' whence 

(2)  V(f,2u-1) < V(f,;.'u»-1)  iff  u < (5f^2-)r(5rJ
+4))/l.o . 

Now let  s be the largest integer such that  2 < 2s < f-1 

and 

V(f,2s) = max jv(f,2u):2 < 2u < f-l] , 
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and let  t  be the largest integer such that 

2 < 2t-l < f-1  and 

V(f,2t-1) = max ^V(f,2u-1): 2 < 2u-l < f-l] . 

Then    V(f,2s-2) < V(f,2s) > V(f,2s.2) 

and from  (1)   it  follows   that 

8-1   <   ( [>f-^-ifC^f"-'.))/J.0   <   S. 

whence    s =  ((5f+6-^(5^-^/10   . 

Similar reasoning bused on (2) shows that 

t =  ((5f+12-||"{5f2+^)/10  . 

This completes the proof, for the maximum vhich we seek 

is either V(f,2s)  or  V(f,2t-1} Cor both).(This reasoning 

assumes that  1 < 2s-2 < 23+2 < f-l  and 

1 < 2t-5 < 2t+l < f-l.  '[-he assumption fails for a few 

small values of f,  but those are easily treated directly.)I I 

When f < 7,  the validity of 'j.'\   follows from 3.3 

(without using the J3G conjecture).  The first alternative 

in 3.4 arises for f c 13,4,6,?], the second for f c |2,4,5j. 
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4.     The problem of Dantzig 

Dantzig's problem (No. 7 in [J]) is not immediately 

concerned with linear ineoualitieG in real variables, but 

rather with  m  linear equation::; in n  nonnep;ative variables. 

Accordingly, our attention la directed to the positive 

orthant 9 ,  consisting of all points of ^n    which have 

exclusively nonnegative coordinates.  A linear equation 

in  n real variables determines a hyperplane in  Rn,  and 

a system of m linear equations determines a flat of di- 

mension > n-rn;  if the system is not redundant, the dimen- 

sion of the flat is equa] to  n - m.  Thus Dantzig's problem 

may be stated more geometrically as follows:  Among the 

intersections of  §n with the various k-dimensional flats 

in ^ ,  which oner, have the maximum number of vertices 

and what is this maximum number? 

Up to this point we have discussed only bounded 

sets. However, there is no such restriction in Dantzig's 

problern, and accordingly we define a d-polyhedron to be 

a d-dimensional set which is the intersection of a finite 

number of closed halfspaces.  As is well known (Weyl [153), 

a set is a d-polytope if and only if it is a bounded d-poly- 

hedron. 

Considering each finite-dimensional linear space to 

be self-dual with respect to an Inner product { , ) , we 

shall use without specific reference the standard polarity 

theory for convex bodies. The results employed here can 

be found in Weyl [15] or Klee [11]. Me require also the 

following remark. 



52 

^.1  PROPOSITION  Suppose  E and  p  are finite-- 

dimennional linear spacen,  Visa linear branr.formation 

of  E into  P,  and J"1 is the ad.ioint of ^ .  Then 

for each set  X <: h' it is true that 

Sa((5x)0) = x0 n (W). 

Proof.  Here ^c  is the linear transformation of 

F  into  E which is defined by the condition that 

{x, Jdy) = (Tx,y)  for all  x c E  and  y e p.  To 

establish 4.1 it suffices to note that if x e E,  y E F, 

and  x = 5ay,  then the following five statements are 

equivalent:  x c X0;  <X,X><1  for all  xcX; 

\x, ^ay) < 1  for all  x E Xj (5xj) < 1  for all  x c X; 

In applying 4.1 we will use the fact that the linear 

transformation   Va  ig nonsingular provided  ^ maps 

E onto  F. 

The next theorem extends an observation of Davis [4]. 

4.2 MLEOREM Suppose P is k-polyhe'iron in  R 

with 0 e int P.  Then the following throe statement S are 

equivalent 

(a)  P is affinely equivalent to the intersection of 

^n ■■'ith   some k-flat in  Rn; 

(b) P contains no line and P has ak most  n(k-l)-faces; 

(c) the polar body  P0  is a k-polybooo in ^  with 

at most  n vertices other than the origin 0 (which ma^ be 

a vertex of P0 but is not required to be). 



Proof.  (a) =£> (b).  .Suppose (a) holds.  Then there 

is a nonsingular affine transformation \     of  l?k  onto 

Iin  such that SlJ = ( ^Ük) n On.  For  l<i<n let-^. 

be the composition of ^  with the i  coordinate func- 

tion on  R .  Then the k-polyhedron  P is the intersection 

of the  n sets ^x G l]k: ^(x) > o]  (1 < i < n),  and 

since each of these sets is either all of g  or is a 

closed halfspace in  R ,  it follows that  P has at most 

n  (k-1)-faces.  Since g  contains no line, the same is 

true of  P. 

(b) => (c).  Suppose (b) holds and  0 e int P, 

whence of course  P  is bounded.  Since  P contains no 

line,  P  is not contained in a hyperplane in g  and 

consequently  P0  is k-dimensional.  liach vertex of  P0 

other than 0  corresponds to a  (k-l)-face of  P,  so 

P  is a k-polytope with at most  n vertices other than 

0. 

(c) =ä> (a).  Suppose (c) holds and consider the 

n-simplex 

S .= ^x = (x1,.,.,xn) e Rn: ^   x1 < 1; x1 > 0 for all i^c- Qn. 
1  "      ~ "f 

<3H    A - T,0   ..„,,   ,,0 Since  0 e P  and  P  has at most  n vertices other than 

0,  there exists a linear transformation \    of R11 onto 
- 

R  such that  ^S = P0.  From 4.1 it follows that the set 

P is affinely equivalent to a k-section of the set 
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s0 = [x c  Rajxi < i for all i] , 

and of course 3° is equivalent to gn.  Thus (c) 

implies (a) and the proof is complete. I I 

4.5 COROLLARY If P is a k-polyhedron and j  is 

SS integer > 1,  then the fgllowiDg tv/o statements are 

enuivalent: 

(a) P ij3 affinely equiv-tient to the intersection of 

S  with some  (k+j)-flat in R ; 

(b) P contains no line and P has at most  n-j-1 

(k-l)-faces. 

Proof.  (a) =i> (b).  Let G  be a  (kfj)-flat in i?n 

such that the intersection G n 0a is affineiy equiva- 

lent to the k-nolyhedron P.  Let 0^ (an jf-dimensional 

orthant in Qn)    be the smallest face of gn which 

contains the set G fl 0n.  ir (  * n    then    0    intersects 

the interior of gn and it is clear tnat 

dim (G fl §n) = dim G = k + j > k, 

an impossibility.  Thus {  < n-1  and  G  misses the 

interior of g .  Since §n    is polyhedral the supporting 

flat G must lie in a supporting hyperplane H of gn. 

By the minimality of (,  Q  includes a point of the relative 

interior of Q\     and this implies that 9^ c H,  whence 

11 contains the linear hull ]r  of §^.  It can be veri- 

fied that 
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diin(G n 3^) = dim(G n g^) = k. 

Since the  (k+j)-fiat  G  and the  ^-flat  /  both lie 

in the  (n-D-flat  H,  we conclude from  a well-known 

inequality that 

O + j) + jf - k < n-1, 

whence / < n-j-l. Since the k-polyhedron P is affinely 

equivalent to a k-section of ^,  we conclude from 4.2 

that condition (b) is satisfied. 

(b) =i> (a).  Suppose  P is as in (b),  whence by 4.2 

P is af finely equivalent to the intersection of Q11-^-1 

by a k-flat W    in R11-^1. We may regard ^"J"1 as a 

face of Qn    and then <f    contains a hyperplane H such 

that 

In the  (n-l)-flat H  there is a J-flat  F-  whose inter- 

section with if-J-1  consists of a single point of  F, 

and then the affine hul]   G  of P u P«  is a 

(j^k)-flat in if     such  that  G n 9n = F fl g11-^-1   a 

set affinely equivalent to  P. I I 

The following result is useful for its corollary, which 

justifies a restriction to bounded sets in the problem of 

Dantzig. 

4,4  PfiOPOSITION  £or iiositi^ integer  d,m,  and  n 

the following two statements are equivalent: 
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(a) there exists an unbounded d-polyhcdron  P which 

contains no line and which has exactly m (d-1)-faces 

and exactly n vertices; 

(b) there exist a d-polytope  Q and a boundary point 

z  (not necessarily a vertex)  of Q such that  Q has 

exactly m vertices  / z     and exactly n (d-1)-faces 

disjoint from  z. 

Proof.  To see that (a) and (b), suppose 

0 £ int P c: ß  and consider the polar body  Q .= P0 c gd. 

With  z .= 0,  the desired conclusion follows from the 

standard polarity theory.  To see that (b) implies (a), 

take 0 = z E bdry Q c 3d and let  P .= Q0.  Again the 

polarity theory is applicable. I I 

4.5 COROLLARY  Guppose  P is an unbounded d-poly- 

hedron which contains no line and has  f (d-l)-faces. 

Then  f > d,  and if  f > d + 1  there exists a d-poly- 

tope which has  f  (d-1)-faces and has more vertices than 

P. 

Proof.  Recall that  P is the intersection of the 

supporting halfspaces determined by its  (d-1)-faces. 

If  f = k < d,  then P contains a flat of deficiency 

d-k > 0,  contrary to our assumption.  Hence f > d, 

and when f = d it is easily verified that P is a 

convex cone which is affinely equivalent to an orthant 
„d in R . 
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Now suppose f=m>d+l,  let  n denote the 

number of vertices of P,  and let Q and z be as 

in 4.4 (b).  If z  is not a vertex of  Q,  then Q 

is a d-polytope having in vertices and more than 

n  Cd-l)-faces.  Translating Q so as to contain the 

origin in its interior and then forming the polar body, 

we obtain a d-polytope which has  f  (d-l)-faces  and 

has more vertices than P.  Mow suppose  z  is a vertex 

of Q.  If  n = 1  the assertion of 4.5 ir, obvious, so 

we suppose n > 2  and denote by S the polytope which 

is generated by the vertices of Q other than z.  With 

n > 2  it is easy to see that  S  is a d-polytope which 

has more than n (d-1)-faces, and then we proceed as we 

did earlier with Q. II 

The next result is a partial solution of Dantzig's 

problem. 

4.6 THEOREM Suppose the set P in Rn is the 

intersection of the positive orthant §n with a flat 

of deficiency m in if1, where n - 2 Vn+I < m < n 

0* restriction that is unnecessary if the JSG conjecture 

is correct).  Then the number of extreme points of the 
m+n 

nTH V „ / - set P is at most ^j I   J    when n - m is even and 
" ra 

m+n-l 

at most 21     J when n - m is odd.  The upper bounds \ m  / 

are attained if and only if  P is an (n-m)-polytope such 
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that each vertex of P is on exactly n-m edges and such 

that for all k < <(n-m)/2>, each k (n-m-1)-faces of P 

intersect in an (n-m-k)-face of P. 

Proof.  Let V(f,d) denote, as in $3, the maximum num- 

ber of vertices achieved by any d-polytope which has f 

(d-l)-faces; by 4.5, this is greater than the maximum num- 

ber of vertices achieved by any unbounded d-polyhedron 

which has f (d-l)-faces.  Let k .=. dim P and 

j .- n-m-k > 0.  If J - o it follows from 4.2 that 

f0(P) < V(n,k),  where equality implies boundedness of P. 

If  J > 0 it follows from 4.5 that  fo(P) < V(n-d-l,k) < V(n,k) 

We conclude that  fo(P) < V(n,n-m),  where equality cannot 

obtain unless P is an  (n-m)-polytope which has n faces 

of dimension n-m-1. Now if n^V^Tl < m < n,  then 

n > (2^) - 1,  so from 3.2 it follows that  V(n,n-m)  is 

equal to the upper bounds listed in 4.6.  And 4.2 implies 

that V(n,n-m)  can really be attained as the number of 

vertices of some set P of the sort described in 4.6.  To 

characterize those sets P for which the upper bound is 

actually attained, one applies certain results from §§1-2, 

the reasoning being similar to that of 5.1.11 

If a flat in %n    is determined by a system of m 

linear equations, then without checking the redundancy of 

the system we know only that the flat is of deficiency 

< m.  Thus the following remark is also of interest in 

connection with Dantzig's problem.  It can be proved by the 

reasoning of 5.4. 



39 

4.7 PROPOSITION Suppose the JSG conjecture is correct. 

Let m and n be integers with 0<m<n>2 and let 

v be the maximum number of vertices which is realized bj 

the intersection of gn with a flat of deficiency < m in 3°. 

Let  s .- <(5n ♦ 6 -VC*2-«)/!$ and t .- <(5n ♦ 12 -fan2^)/l$ 

Then at least one of the following statements is true; 

(a) 2s > n-m and v - -2-    fn-8). 
~ n-s V. 3 /» 

(b) 2t-l > n-m and v - 2 (°"J) ; 

(c) 2s < n-m,  n-m is even, and v ■ ^S_ /"T" ^ . 
      m+n ^ m / ' 

(d) 2t-l < n-m, n-m is odd, and v - 2 f     ^") 
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FOOTNOTE 

1)  I have not actually seen the thesis of Fieldhouse, 

but have read a review of it [6]. 


